Detecting and interpreting distortions in hierarchical organization of complex time series.
نویسندگان
چکیده
Hierarchical organization is a cornerstone of complexity and multifractality constitutes its central quantifying concept. For model uniform cascades the corresponding singularity spectra are symmetric while those extracted from empirical data are often asymmetric. Using selected time series representing such diverse phenomena as price changes and intertransaction times in financial markets, sentence length variability in narrative texts, Missouri River discharge, and sunspot number variability as examples, we show that the resulting singularity spectra appear strongly asymmetric, more often left sided but in some cases also right sided. We present a unified view on the origin of such effects and indicate that they may be crucially informative for identifying the composition of the time series. One particularly intriguing case of this latter kind of asymmetry is detected in the daily reported sunspot number variability. This signals that either the commonly used famous Wolf formula distorts the real dynamics in expressing the largest sunspot numbers or, if not, that their dynamics is governed by a somewhat different mechanism.
منابع مشابه
A New Method for Duplicate Detection Using Hierarchical Clustering of Records
Accuracy and validity of data are prerequisites of appropriate operations of any software system. Always there is possibility of occurring errors in data due to human and system faults. One of these errors is existence of duplicate records in data sources. Duplicate records refer to the same real world entity. There must be one of them in a data source, but for some reasons like aggregation of ...
متن کاملDetecting Huntington Patient Using Chaotic Features of Gait Time Series
Huntington's disease (HD) is a congenital, progressive, neurodegenerative disorder characterized by cognitive, motor, and psychological disorders. Clinical diagnosis of HD relies on the manifestation of movement abnormalities. In this study, we introduce a mathematical method for HD detection using step spacing. We used 16 walking signals as control and 20 walking signals as HD. We took a s...
متن کاملOn the Detection of Trends in Time Series of Functional Data
A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...
متن کاملتحلیل عددی مسائل معیار پلاستیسیته کرنش بزرگ با استفاده از المانها و سلولهای مرتبه بالا
finite cell method, are employed to compute a series of benchmark problems in the finite strain von Mises or J2 theory of plasticity. The hierarchical (integrated Legendre) shape functions are used for the finite element approximation of incompressible plastic dominated deformations occurring in the finite strain plasticity of ductile metals. The computational examples include the necking under...
متن کاملNew optimized model identification in time series model and its difficulties
Model identification is an important and complicated step within the autoregressive integrated moving average (ARIMA) methodology framework. This step is especially difficult for integrated series. In this article first investigate Box-Jenkins methodology and its faults in detecting model, and hence have discussed the problem of outliers in time series. By using this optimization method, we wil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2015